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We propose and analyze a generic mathematical model for dynamic, stochastic vehicle routing problems, the dynamic
traveling repairman problem (DTRP). The model 1s motivated by applications in which the objective is to minimize the
wait for service in a stochastic and dynamically changing environment. This is a departure from classical vehicle routing
problems where one seeks to minimize total travel time in a static, determinstic environment. Potential areas of
application nclude repair, inventory, emergency service and scheduling problems. The DTRP is defined as follows:
Demands for service arrive in time according to a Poisson process, are independent and uniformly distributed in a
Euclidean service region, and require an independent and identically distributed amount of on-site service by a vehicle.
The problem is to find a policy for routing the service vehicle that minimizes the average time demands spent in the
system. We propose and analyze several policies for the DTRP. We find a provably optimal policy in light traffic and
several policies with system times within a constant factor of the optimal policy in heavy traffic. We also show that the
waiting time grows much faster than in traditional queues as the traffic itensity increases, yet the stability condition

does not depend on the system geometry.

he traveling salesman problem (TSP) is one of

the most studied problems in the operations
research and applied mathematics literature. The
attention it receives is due both to the problem’s
richness and inherent elegance and to its frequent
occurrence in practical problems, both directly and as
a subproblem. Yet, in many practical applications,
the TSP is a deterministic, static approximation to a
problem which is, in reality, both probabilistic and
time varying (dynamic). In addition, there are often
costs associated with the wait for delivery that are
not captured in the objective of minimizing travel
distance.

For example, a prototypical application of the TSP
is the routing of a vehicle from a central depot to a
set of dispersed demand points to minimize the total
travel costs. In real distribution systems, however,
orders (demands) arrive randomly in time, and the
dispatching of vehicles is a continuous process of
collecting demands, forming tours and dispatching
vehicles. In such a dynamic setting, the wait for a
delivery (service) may be a more important factor than
the travel cost. Applications, in which the wait for
service, rather than the total travel time, is a more
suitable objective and the demand pattern is both
dynamic and stochastic, include the following:

1. The demands are requests for replenishment of
stock (raw materials, merchandise, etc.) from

remote sites that must be delivered from a central
depot. In this case, large waiting times mean that
large inventories are needed at the remote sites to
prevent stockout.

. In managing a fleet of taxis, one would like to

minimize the average waiting time of customers.
Decision makers therefore need good dispatching
policies, fleet sizing models and estimates of the
level of service.

. Demands represent requests for emergency service.

The objective is therefore to reduce the wait for
service rather than to minimize the travel cost of
the emergency vehicle. In this case, we want real-
time policies that can be applied in a stochastic
environment.

. The demands are geographically dispersed failures

that must be serviced by a mobile repairman. The
objective in this case is to minimize the down-
time (wait plus service time) at the various loca-
tions. Examples in this category include servicing
of geographically distributed communications
or utility networks, automobile road service
(AAA), or the dispatching of a roving expert to
local sites.

. Finally, for completeness, consider the problem in

which a salesman receives leads randomly in time
and wants to make sales calls to minimize the time
customers spend contemplating their purchases!

Subject classifications Networks/graphs: stochastic, traveling salesman. Probability: stochastic model. Transportation: vehicle routing.
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Motivated by these application areas, we pro-
pose and analyze a generic mathematical model
which we call the dynamic traveling repairman
problem (DTRP). The model has several important
characteristics:

1. The objective is to minimize waiting time, not
travel cost;

2. Information about future demands is stochastic;

3. The demands vary over time (i.e., they are
dynamic);

4. Policies have to be implemented in real time;

5. The problem involves queueing phenomena.

In general, little is known about dynamic versions
of the TSP. Psaraftis (1988) defines the dynamic trav-
eling salesman problem (DTSP), which initially moti-
vated our investigation: In a complete graph on »
nodes, demands for service are independently gener-
ated at each node : according to a Poisson process
with parameter A,. These demands are to be serviced
by a salesman who takes a known time 7, to go from
i to j, and spends a stochastic time X, which has a
known distribution, servicing each demand (on loca-
tion). The goal is to find strategies that optimize over
some performance measure (waiting time, through-
put). By comparison, the DTRP is defined in the
Euclidean plane and optimization is over the total
system time. No general results were obtained for this
problem, but useful insights and conjectures were
made.

Some of the characteristics of the DTRP have been
considered in isolation in the literature. The first is
the objective of minimizing average system time
rather than total travel time. In a deterministic setting,
this idea appears in the traveling repairman (or deliv-
ery) problem (TRP), in which a repair unit has to
service a set of demands V starting from a depot. If
d(i, j) denotes the travel time from i to j, the problem
is to find a tour starting from the depot through the
demands to minimize the total waiting time of
the demands. As a result, if the sequence in which
the repair unit travels is r = (1, 2, .. ., n, 1), then the
total waiting time is W, = Y2, w, where w, =
;=1 d(j, j + 1) is the waiting time of the demand ;.
The problem closely resembles the TSP and can be
thought of as the deterministic and static analog of
the DTRP. As is the case with the TSP, the TRP is
NP-complete both on a graph and in the Euclidean
plane (Sahni and Gonzalez 1976). In contrast with
the TSP, which is trivial on trees, the TRP seems dif-
ficult on trees. Minieka (1987) proposes an expo-
nential O(n”) algorithm for the TRP on a tree
T =(V, E), where | V| = n and p is the number of
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leaves in 7. Despite its interest and applicability, the
problem has not received much attention from the
research community. As a result, not much is known
about the TRP.

Jaillet (1988), Bertsimas (1988b), and Bertsimas,
Jaillet and Odoni (1990) address the second and fourth
characteristics under the unifying framework of
a priori optimization. They define and analyze the
probabilistic traveling salesman problem (PTSP) and
the probabilistic vehicle routing problem (PVRP) as
follows: There are n known points, and on any given
instance of the problem only a subset S consisting of
| S| =k out of n points (0 < k < n) must be visited.
Suppose that the probability that instance S occurs is
p(S). We wish to find a priori a tour through all
points. On any given instance of the problem, the &
points present will be visited in the same order as they
appear in the a priori tour. The problem of finding
such an a priori tour that is of minimum length in the
expected value sense is defined as the PTSP. In the
case where the vehicle has capacity Q, the correspond-
ing problem is the probabilistic vehicle routing prob-
lem (Bertsimas 1988a). It is clear that a real-time
policy is followed, but the problem is inherently
static and is solved a priori using only probabilistic
information.

An important characteristic of the DTRP is that it
incorporates queueing phenomena. Queueing consid-
erations in the context of location problems have been
considered in Berman et al. (1989), and Batta, Larson
and Odoni (1988). In this setting, the authors define
the stochastic queue median problem (SQMP) in
which the important decision is a strategic one; we
would like to locate a server in a network which
behaves like an M/G/1 queue. Arrivals occur in a
dynamic manner according to a Poisson process, and
a server (vehicle), following a first-come, first-served
(FCFS) discipline, is dispatched from a central depot
and returns to the depot again after service is com-
pleted. The problem is to locate the depot on a net-
work so that the mean queueing delay plus travel time
is minimized. The model is appropriate for analyzing
emergency service systems (e.g., police, fire and ambu-
lance service). In our setting, the SQMP can be seen
as a network case of the DTRP in which the policy is
to strategically locate the server and then follow an
FCFS dispatching rule. The connection between loca-
tion/queueing problems and dynamic vehicle routing
problems was also recognized by Psaraftis, where he
conjectures that for low arrival rates, the DTSP resem-
bles the [-median problem. We analyze the perform-
ance of this policy in Section 4.1 for the Euclidean
case and show formally that this is indeed true.
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Our strategy in analyzing the DTRP is the following:
First, we establish some lower bounds on the average
system time for all policies. Then, using a variety
of techniques from combinatorial optimization,
queueing theory, geometrical probability and simula-
tion, we analyze several policies and compare their
performance to the lower bounds. A variant of the
FCFS policy is shown to be optimal in the case of
light traffic. In heavy traffic, several policies are shown
to be within a constant factor of the lower bounds and
thus from the optimal policy. The policy with the best
provable performance guarantee in heavy traffic is one
based on forming TSP tours, while the best policy
empirically is the nearest neighbor policy. Our results
also show that the system time grows much more
rapidly with traffic intensity than in traditional queues
and the stability condition is independent of the sys-
tem geometry.

The paper is organized as follows: Since we use a
variety of results from several areas, we briefly describe
them and give the appropriate references in Section 1.
In Section 2, we formally describe the DTRP and
introduce the notation. Lower bounds for the optimal
system time are derived in Section 3. In Section 4,
which is central to the paper, we introduce and analyze
several policies for the DTRP. In Section 4.6, an
example is given to illustrate the relative performance
of the policies. Finally, in Section 5, we summarize
the contributions of the paper and give some conclud-
ing remarks.

1. PROBABILISTIC AND QUEUEING
BACKGROUND

In this section, we briefly describe the results used in
the paper.

An Upper Bound for the Waiting Time in a GI/G/1
Queue. In a GI/G/1 queue let 1/\ be the expected
interarrival time and § be the expected service time.
Let o2, o7 denote the variances of the interarrival and
service time distribution, respectively. The traffic
intensity is p = A3. There is no simple explicit expres-
sion for the expected waiting time W in this case. (The
average system time 7 is simply W + §.) However,
Kingman (1962) (see also, Kleinrock 1976b) proves
that

< Mol + o)
WESa—a M

In addition, this upper bound is asymptotically
exact as p — 1. For M/G/1 it is well known (see
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Kleinrock 1976a) that
52

AT

(2)
where 52 = o- + 3° is the second moment of the
service time.

Symmetric Cyclic Queues. Consider a queueing sys-
tem that consists of k queues Q,, Q-, ..., Oy each
with infinite capacity. Customers arrive at each queue
according to independent Poisson processes with the
same arrival intensity A/k. The queues are served by
a single server who visits the queues in a fixed cyclic
order Q, Q-, ..., Qi, @1, Qs, .... The travel time
around the cycle is a constant d. The service times at
every queue are independent, identically distributed
random variables with mean 3 and second moment
§*. The traffic intensity is p = A3. The server uses the
exhaustive service policy. i.e., servicing each queue /
unti! the queue is empty before proceeding. The
expected waiting time for this system is given by (see,
Bertsekas and Gallager 1987, p. 156):

AS” 1 — p/k
2Al=p) 201 =p)

Note that in an asymmetric cyclic queue, in which
arrival processes and service times are not identical,
there are no closed form expressions for the waiting
time (see Ferguson and Aminetzah 1985).

W:

3)

Jensen’s Inequality. If fis a convex function and X is
a random variable, then

E[f(X)] = f(E[X]) (4)
provided that the expectations exist.

Markov’s Inequality. If X is a nonnegative random
variable and x is any nonnegative number, then

E[X] = xP{X > x}. (5

Wald’s Equation. Let {X,; i = 1} be a sequence of
i.i.d. random variables with E[X] < « and N be a
finite-mean random variable with the property that
P{N = n} is independent of {X,; i > n} for all #. (Such
a random variable N is a stopping time for the
sequence {X,; i = 1}.) Then

E[Z X,] = E[N]E[X,]. (6)

Stochastically Larger (Definition). A random vari-
able X is said to be stochastically larger than a random

Copyright © 2001 All Rights Reserved
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variable Y, denoted X =¢7 Y, if
PiX>z} = P{Y >z} forall = (7)

Geometrical Probability. Given two uniformly and
independently distributed points X;, X; in a square of
area A, then

E[l X, - X ||] = ¢, V4,
E[I X — X |12) = 24 (8)

where ¢, = 0.52, ¢; = /5 (see, Larson and Odoni 1981,
p. 135). If we let x* denote the center of a square of
area A, then it is known (Larson and Odoni) that the
first and second moments of the distance to a uni-
formly chosen point X are given by

E[|X - x*|]=avVA, E[|X-x*]=cad (9)
where ¢; = (\/5 + /n(l + \/f)/6 = 0.383, ¢, = Y.

Asymptotic Properties of the TSP in the Euclidean
Plane. Let X, ... X, be independently and uniformly
distributed points in a square of area 4 and L, denotes
the length of the optimal tour through the points,
Then there exists a constant, 8ysp, such that

'III_TQ % = 6TSP\/2 (10)
with probability one (see, Beardwood, Halton and
Hammersley 1959, Steele 1981, and Lawler et al.
1985). In his experimental work with very large-scale
TSPs, Johnson (1988) estimates Brsp = 0.72. In addi-
tion, it is also well known (see, Lawler et al., p. 189)
that lim,_,..var(L,) = O(1), and therefore

lim

n—oc

var(L,)
—, = 0. (11)

Space Filling Curves. The following results are due
to Platzman and Bartholdi (1983). Let # = {00 <
¢ < 1} denote the unit circle and .»¥ = {(x, »)|0 <
x < 1,0 < y < 1} the unit square. Then there exists a
continuous mapping y from # onto . with the prop-
erty that forany 6, 0’ € &

(@) — ¢(@) Il < 2v]6 —06"]. (12)

If X, ... X,are any # points in .% and L, is the length
of a tour of these # points formed by visiting them in
increasing order of their preimages in % (i.e., increas-
ing 6 order), then

L,<2vn (13)

If the points X, . X, are independently and
uniformly distributed in %, then there exists a

constant, Sspc, such that

lim sup 22 = 8 (14)
n st P \/;-1 SFC
with probability one. The value of Sspc is approxi-
mately 0.956.

2. PROBLEM DEFINITION AND NOTATION

A convex, bounded region & of area 4 contains a
vehicle (server) that travels at a constant unit velocity
between demand (or customer) locations. Demands
for service arrive in time according to a Poisson pro-
cess with rate A, and their locations are independent
and uniformly distributed in . Each demand i
requires an independent and identically distributed
amount of on-site service with mean duration 5 and
second moment 5°. No preemption of on-site service
1s allowed. We assume that 5 > 0. The fraction of time
the server spends in on-site service is denoted p, and
for stable systems p = A3. To simplify the calculations
and presentation, we often assume that the region .o/
is a square of area 4. This restriction can usually be
relaxed without affecting the results, though numerical
calculations may be more difficult.

Let d, be the travel time from the location of the
demand served prior to i to demand i’s location. The
quantity d, can be considered the travel time compo-
nent of demand i’s fotal service requirement. The
steady-state expected value of d, is denoted 4 and is
given by d = lim,_... E[d,], where we assume the limit
exists.

The system time of demand /, denoted 7, is defined
as the elapsed time between the arrival of demand i
and the time the server completes the service of i. The
waiting time of demand i, W,, is defined by W, =
T, = s,. The steady-state system time, 7, is defined by
T=lim_.E[T,]and W= T — 5. The problem is to
find a policy for servicing demands that minimizes 7,
and this optimal system time is denoted 7* We use
system time rather than waiting time because, in
relating the DTRP to traditional queueing systems, d,
can mistakenly be interpreted as part of the “service
time,” which does not correspond to our definition.

A final remark concerning the difference between
the DTRP and the M/G/1 queue: In the DTRP, the
total service requirement has both a travel and on-site
service component. Although the on-site service
requirements are independent, the travel times gen-
erally are not. As a result, total service requirements
are not ii.d. random variables, and therefore the
methodology of the M/G/1 queue is not applicable.

Convright © 2001 All Rights Reserved




3. LOWER BOUNDS ON THE OPTIMAL DTRP
POLICY

We first establish two simple but powerful lower
bounds on the optimal expected system time, 7*. In
Section 4, we then use these lower bounds to evaluate
the performance of the proposed policies.

3.1. A Light Traffic Lower Bound

The first bound for the DTRP is established by divid-
ing the system time of demand i, 7T, into three com-
ponents: the waiting time due to the server’s travel
prior to serving i, denoted W¥; the waiting time due
to the on-site service times of demands served prior
to i, denoted W); and demand i’s own on-site service
time, s,. Thus

T, =W + W +s,.
Taking expectations and letting i — oo gives
T=W'+ W +3 (15)

where W9 = lim,_..E[W¢] and W* = lim _.E[W;].
Note that W= W*+ W",

To bound W¥, note that it is at least as large as the
travel delay (distance) between the server’s location at
the time of a demand’s arrival and its location. In
general, the server is located in the region according
to some (generally unknown) spatial distribution that
depends on the server’s policy. Thus, W is bounded
below by the expected distance between a server loca-
tion selected from this distribution and a uniform
location. Suppose that we have the option of locating
the server in the best a priori location, x*; that is, the
location that minimizes the expected distance to a
uniformly chosen location, X. This certainly yields a
lower bound on the expected distance between the
server and the arrival, so

W<z min E[[| X — x| ]. (16)
\WE W

The location x* that achieves this minimization is the
median of the region . For the case where & is a
square, x* is simply the center of the square, in which
the lower bound is from (9)

W= ;A = 0.383 VA. (17)

To bound W, let N denote the expected number of
demands served during a waiting time. Since service
times are independent, we then have

A2
W =3N + -
2
where the second term is the expected residual service
time of the demand being served at the time of arrival.
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Since in steady state the expected number of demands
served during a wait is equal to the expected number
that arrive, we can apply Little’s law to get

= \32
W‘=§)\W+>\—S=pW+—s.
2 2
Since W= W9+ W we obtain
P As?
W= Ly + . 18
1__p( 9 20 =) (18)

Combining (15), (16), and (18) and noting that these
bounds are true for all policies we get the following
theorem.

Theorem 1

_ EUX — x*|] As?
- l-»p 2(1 = p)

where x* is the median of region &/. For the special
case where &/ is a square

E[| X — x*||] = csvA4 = 0.383 VA.

T*

As shown below, this bound is most useful in the case
of light traffic (A — 0).

3.2. A Heavy Traffic Lower Bound

A lower bound that is most useful for p — 1 is provided
by the following theorem.

Theorem 2. There exists a constant v = 2/332x =
0.266 such that
pVZ| 1-2p

* 2 _
Ty T T (20)

Proof. First, suppose that for all service policies the
following bound is known:

_ V4
vN + /2

where N is the average number of demands in queue.
Then the stability condition

d=~ 21)

W

1
S+ds-
5 X (22)
implies

> | -

.. _yv4
T+ ————— <
VN + 12

After rearranging, and noting that 7 = W + § and
N = AW, we obtain the bound of Theorem 2. So
the theorem is established once (21) is proven.
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To prove (21), consider a random “tagged” arrival
and define:

% = The set of locations of demands that are in queue
at the time of the tagged demand’s arrival plus
the server’s location;

& = The set of locations of the demands that arrive
during the tagged demand’s waiting time
ordered by their time of arrival;

Xo = The tagged demand’s location;

N=|Zi=0,1

Z¥=mine. ||l x - Xo|.

Furthermore, define Z, = || X, — X, ||, where X, is the
location of the ith demand to arrive after the tagged
demand (e.g., % = {X;, X;, ..., Xy }). Note that
{Z,; 1= 1} areii.d. with
2
Pz <zj<Z 23)
A

and ¥, is a stopping time for the sequence {Z,; i = 1}.

The set of locations from which the server can visit
the tagged demand is at most % U .#,; therefore, the
travel time component of the tagged demand’s total

service requirement is at least min{Zg, Z,, ..., Zy,}.
Hence
d = E[min{Z¥, Z,, ..., Zu}]. (24)

We next bound the right-hand side of (24). To do
so, define an indicator variable for the random vari-
able X by

STy
7 lo ifX>z

where z is a positive constant to be determined. Then

P[mln{Zé‘, Z], ey ZN1} > Z}

Ny
=4%+2Q=#

=1

N
=1 —P{Iz;,+ Y 12,>0}

=1

v

Ny
1 - E[IZ;, + > Iz,:l (Ix = 0, Integer)
=1

1—- E[Iz] — E[M]JE[I2] (Wald’s equation).

Since E[N,] = P{Z, < z} is bounded according to (23),
and E{l;} = P{Z¥ < 2} we obtain

P{mln{{Z(’f, Zl, Ceay ZN]} > 2}
2
21—-P{Z3‘<2}—N%. 25)

An upper bound on P{Z§ < z} is provided by the
following lemma.

Lemma 1

g

22
— V41,

P(Z¥ <z} <

Proof. The proof relies on the result due to
Haimovich and Magnanti (1988) for the k-median
problem: Let % be any set of points in & with
| #| =k, X be a uniformly distributed location in
& independent of .# and define

Z* = minee | F 1 X — x|

Define the random variable Y to be the dis-
tance from the center of a circle of area 4/k to a uni-
formly distributed point within the circle. Then for all
nondecreasing functions f

E[f(Z%)] = E[f(Y)].
An immediate consequence of this (see, for example
Ross 1983) is that Z* =51 Y. As a result

2

P{Z*sz}sP{Ysz}s%k

where the last inequality follows from the definition
of Y.

Consider conditioning on »,, and note that Xj is
independent of .%, under any condition on .%. There-
fore, from the above result

2
PIZE < z| Ny} < % No.

Unconditioning and observing that E[N,] = N + 1
establishes the lemma.

Using the result of Lemma 1 in (25) and the trivial
bound P{-} > 0 we obtain

E[mln{Zg’ le vy ZN|}]

(A/72N+1)172 7r22
af <1——(2N+1))d2
0 A

2 VA
2V2x N+ Y,

which establishes (21) with v = 2/3v2# = 0.266, and
thus Theorem 2 is proven.

A few comments on the lower bound of Theorem 2
are in order. First, it shows that the waiting time grows
at least as fast as (1 — p)~? rather than (1 — p)~', as is
the case for a classical queueing system. Also, it is only
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a function of the first moment of the on-site service
time, which again is a significant departure from tra-
ditional queueing system behavior (e.g., the M/G/1
system). The explanation lies in the geometry of the
system. The bound of Theorem 2 gives (via Little’s
theorem) the minimum average number of demands
that must be maintained in the system to ensure that
the average travel distance, d, satisfies the stability
condition (22). This number, however, grows much
more rapidly than the average number in the system
due to traditional queueing delays.

Because several loose assumptions were used in the
proof (e.g., .% is the set of Ny-median locations, etc.),
it is likely that the value vy = 0.266 is not tight. For
example, if one assumes that locations of demands at
service completion epochs are approximately uni-
form, then by a modified argument a value of vy = >
is obtained. We conjecture that Theorem 2 remains
true even for this larger value of v.

Finally, we have also developed a slightly simpler
proof of (21) that does not require any stopping time
arguments, We do not include it, however, because
the resulting constant value is weaker.

4. SOME PROPOSED POLICIES FOR
THE DTRP

In this section, we propose and analyze several policies
for the DTRP. The first class of policies is based on
variants of the FCFS discipline. We show that one
such policy is optimal in light traffic, in the sense that
it asymptotically achieves the light traffic lower bound
of the last section for A — 0. These policies, however,
are unstable for high utilizations; therefore, we turn
next to a partitioning policy based on subdividing the
large square .« into smaller squares, each of which is
served locally using an FCFS discipline. Using results
on cyclic queues, we show that this policy is within a
constant factor of the lower bounds for all values of
p < 1. This also establishes p < 1 as a sufficient (as
well as, obviously, necessary) condition for stability
in the sense that there exist stable policies for every
p < 1. We next introduce a more sophisticated policy
based on forming successive TSP tours. Its average
system time is nearly half that of the partitioning
policy. Next, we examine a policy based on space
filling curves. It too has a constant factor performance
guarantee and is shown via simulation to perform
about 15% better than the TSP policy. Finally, we
examine the policy of serving the nearest neighbor.
Because of analytical difficulties, we simulate it and
show that the average system time is about 10% lower
than the SFC policy.
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4.1. FCFS Policies

The simplest policy for the DTRP is to service
demands in the order in which they arrive (FCFS).
The first policy we examine of this type is defined as:
1) when demands are present, the server travels
directly from one demand location to the next follow-
ing an FCFS order, and 2) when no unserved demands
are present following a service completion, the server
waits until a new demand arrives before moving.

Because demand locations are independent of the
order of arrivals and the number of demands in queue,
the system behaves like an M/G/1 queue. Note that
the travel times d, are not strictly independent (e.g.,
consider the case d, = v24 ); however, it is true that
they are identically distributed, because each d,
is simply the distance between two independent,
uniformly distributed locations in . Therefore,
the Pollaczek-Khinchin (P-K) formula (2) still
holds. (See Bertsekas and Gallager 1987, pages
142-143 for a proof of the P-K formula under these
assumptions.

The first and second moments of the total service
requirement are, by (8), 3 + ¢ VA4 and §7 + 2¢, VA3 +
¢, A, respectively, where ¢, = 0.52, ¢; = '4. The average
system time is therefore, by the P-K formula (2):

}\(E'2 + 2C1 \/Z.S’ + CZA)
2(1 = Aey VA = p)

Trers = +34+ VA (26)
The stability condition for this policy is p + A JA <
1; therefore, this policy is unstable for values of p
approaching 1. For A — 0, the first term in (26)
approaches zero. Likewise, the second term in Theo-
rem 1 also approaches zero as A — 0. So for the light
traffic case we have

TFCFS<§+ Cl\//q
T* \§+ C3\/Z

as A — 0.

Since § could be arbitrarily small, the worst case
relative performance for this policy in light traffic is
TFCFS/T* = Cl/C3 =~ 1.36.

The FCFS policy can be modified to yield asymp-
totically optimal performance in light traffic as fol-
lows: Consider the policy of locating the server at the
median of . and following an FCFS policy, where
the server travels directly to the service site from the
median, services the demand, and then returns to the
median after service is completed. We call this policy
the stochastic queue median policy (SQM). As before,
the server waits at the median if no demands are
present in the system. Again, since locations are inde-
pendent of the order of arrival and the number in
queue, the system behaves as an M/G/1 queue;
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however, we have to be somewhat careful about count-
ing travel time in this case. From a system viewpoint,
each “service time” now includes the on-site service
plus the round-trip travel time between the median
and the service location. The system time of an indi-
vidual demand, however, includes the wait in queue
plus the one-way travel time to the service location
plus the on-site service time. Therefore, the average
system time under this policy is given by (cf. (9))
AT + e VAS + dcad)

Tsom = 20 = 2redd =) +3+ V4 (27)
where ¢; = 0.383, ¢, = '%. The stability condition for
this policy is 2Ac; VA + p < 1.

Letting A approach zero, the first term in (27) goes
to zero, and since c; is the constant of the lower bound
in Theorem 1 we get

TSQM
T*

— 1 asA—0. (28)

This argument can be generalized to arbitrary regions
& by substituting E[| X — x*|] for ¢;v4 and
E[)| X — x*|?] for ¢,4 in (27). Therefore, we have the
following theorem.

Theorem 3. The SQM policy of locating the server at
the median of region & and servicing demands in an
FCFS order (returing to the median after each service
is completed) is asymptotically optimal for the DTRP
as X\ approaches zero.

This is an intuitively satisfying if not altogether
surprising result. It is conjectured by Psaraftis. It is
also analogous to the results achieved by Berman et
al. and Batta, Larson and Odoni for the optimal
location of a server on a network operated under an
FCFS policy. Our result is somewhat stronger because
our lower bound is on all policies, not just FCFS
policies. Therefore, it establishes the optimality of the
median location for the SQM, but also the optimality
of the SQM discipline itself.

The FCFS and SQM policies become unstable for
o — 1. The reason is that the average distance traveled
per service, d, remains fixed, yet the stability condition
(22) implies d < (1 — p)/A, so d must decrease as p
(and \) increase. As shown below, a policy that is
stable for all values of p must increasingly restrict the
distance the server is willing to travel between services
as the traffic intensity increases.

4.2. The Partitioning Policy

In this section, we examine a policy that achieves the
restriction on d mentioned before through a partition

of the service region .. The analysis relies on results
for symmetric, cyclic queues, so readers unfamiliar
with this area are encouraged to re-examine the defi-
nitions and results in Section 1.

Consider the policy for the DTRP, which we call
PART: The square region ./ is divided into m? subre-
gions, where m > 1 is a given integer that parameter-
izes the policy. Within each subregion, demands are
served using an FCFS discipline identical to the first
FCFS policy of the previous section. The server serv-
ices a subregion until there are no more demands left
in that subregion. It then moves to the next subregion
and services it until no more demands are left, etc.
The sequence of regions the server follows is shown
in Figure 1 for the case m = 4. (Note that the server
always moves to an adjacent subregion.) The pattern
is continuously repeated.

To move from one subregion to the next, the server
uses the projection rule shown in Figure 2. Its last
location in a given subregion is simply “projected”
onto the next subregion to determine the server’s new
starting location. The server then travels in a straight
line between these two locations. As a result of this
rule, the distance traveled between subregions is a
constant vA/m, and each starting location is uni-
formly distributed and independent of the locations
of demands in the new subregion. These properties of
the starting location simplify the analysis. In practice,
one might use a more intelligent rule, such as moving
directly to the first demand in the new subregion. The
total travel distance of this tour is m%(¥A/m) =
m+A.

Notice that to construct the pattern shown in
Figure 1, m must be even. If 2 1s odd, the server ends
up in the upper right subregion and must travel to the
lower right subregion to restart the cycle. This adds
an additional V4 — vA/m to the total travel distance.

T | e
1 | | 1
I : { 1
LY A
; ; : :
)I\ L \}/
' |
T

L..i____é__--—;

<- Direction of Travel

Figure 1. Sequence for serving subregions PART
policy (m = 4).
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Figure 2. PART projection policy for moving to adja-
cent subregion.

To simplify the analysis, we use only the expression
for even m. As shown below, m must be large in heavy
traffic, so for p — 1 the relative error in total travel
distance is negligible.

Each subregion behaves as an M/G/1 queue with
an arrival rate of \/m?, and first and second moments
of 3+ c1(VA/m) and 57 + 2¢,5(VA/m?) + ca(4/m?),
respectively, (c; = 0.52, ¢; = ). The policy as a whole
behaves as a cyclic queue with k = m? queues and
exhaustive service, where the total travel time around
the cycle is m+/4 and the queue parameters are those
given before. Again, as with the FCFS policy, the
travel times are not mutually independent. However,
they are identically distributed and independent of the
number in queue. Therefore, the analysis in Bertsekas
and Gallager still holds. Recalling that the expression
in (3) is for the waiting time in queue only, the average
system time for this policy is given by

AGT + 20, 3(VA/m) + ca(4/m?)
2(1 = A + ¢ (VA/m))
1 = (\mAG + o (VA/m)

21 = AG + o(V4/m))

NV
+c—+75. (29)
m

TeoarT =

The stability condition is

C]}\\/Z

1—p°

_ VA
)\S+017 <l|lem>

Defining the critical value m, by

_GA JA
m = 30)
l1—p

the stability condition becomes m > m, . Note that for
any p < 1 we can find an m > m,_, such that this policy
is stable. Since the optimal policy has a waiting
time no greater than the PART policy, we have the
following theorem.
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Theorem 4. There exists a DTRP policy that has a
finite waiting time for all p < 1 (the PART policy)
and, hence, there exists an optimal policy for all
p <l

This establishes p < 1 as a sufficient condition for
stability. Furthermore, since p is determined only by
the on-site service mean and the arrival rate, we see
that the service region characteristics (size, shape, etc.)
do not affect the amount of traffic the system can
support (provided the service region is bounded, of
course).

For given system parameters, A, S, 52 and A, one
could perform a one-dimensional optimization over
m > 1 using (29) to get the optimum number of
partitions; however, since (29) is quite complicated,
we concentrate on finding the optimal value, m*, for
the heavy traffic case.

For (p — 1), (30) implies that any feasible m is large
(m> m,). Therefore, ignoring the O(1/m) and smaller
terms in the numerators of (29) we obtain

As? + mA
21 = p — Aey A/m)

Trart =

B m2JA + mrs?
T 2m(l - p) — AaVA)

€2y

Differentiating (31) with respect to m and setting the
result equal to zero, we get the critical points:

A VA £ N34 + (1 = p)Aies?
1 —»p )

Only the positive root is feasible. For p — | the second
term under the radical approaches zero; therefore

2>\C|\/Z
1 —p

= 2m,.

m* =

If we substitute this value into (31), then in heavy
traffic

V| +>\?
(I1-p* 1-p°

For p — 1, the first term in (32) dominates; therefore
(recalling the bound in Theorem 2) we have

Trart = 20 (32)

T, 2c
—*’;ﬁ?sy—; asp — 1. (33)

This says that the PART system time is within a
constant factor of the optimum in heavy traffic,
though the provable factor is indeed quite large (about
15). If we use the conjectured value of y = ', the
factor is a more reasonable 4.2.
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4.3. The Traveling Salesman Policy

The traveling salesman policy (TSP for short) is based
on collecting demands into sets that can then be served
using an optimal TSP tour. Let .#; denote the kth set
of n demands to arrive, where 7 is a given constant
that parameterizes the policy, e.g., .# is the set
of demands 1, ..., n, % is the set of demands
n+1,...,2n, etc. Assume that the server operates
out of a depot at a random location in .. When all
demands in .#] have arrived, we form a TSP tour on
these demands that starts and ends at the depot.
Demands are then serviced by following the tour. If
all demands in .#; have arrived when the tour of .#] is
completed, they are serviced using a TSP tour; other-
wise, the server waits until all .#5 demands arrive
before serving it. In this manner, sets are serviced in
an FCFS order. Observe that queueing of sets can
occur.

Suppose that one considers the set .#; to be the kth
“customer.” Since the interarrival time (the time for
n new demands to arrive) and service time (n on-site
services plus the travel time around the tour) of sets
are 1.1.d., the service of sets forms a GI/G/1 queue,
where the interarrival distribution is an Erlang of order
n. The mean and variance of the interarrival times for
sets are n/A and n/\?%, respectively. The service time
of sets is the sum of the travel time around the tour,
which we denote L,, and the »n on-site service times.
If we let E[L,] and var[L,] denote, respectively, the
mean and variance of L,, then the expected value of
the service time of a set is E[L, ] + #5 and the variance
is var(L,) + no?, where ¢ = s> — 52 is the variance
of the on-site service time.

We are now in a position to apply the GI/G/1 upper
bound (1) for the averaging waiting time of sets, We..
This gives

% <)\£ + var[L,] + naf)
(34)
2(1 é E[L.] + ns))
n
1 var[L ] 2
)\(}\7 + s)
(35)

E[L,]
l—p—2A
-8
As we show below, in order for the policy to be
stable in heavy traffic n has to be large. Thus, because

the locations of points are uniform and i.i.d. in the
region, we have from the asymptotic results for

[aday

the TSP (10) and (11) that

E[L,] _, 4

el = (36)
and
var[L,] ~0 (37)

n

where the approximations become exact for n — o.
In order to simplify the final expressions, we neglect
the difference between n + 1 and » in the above
expressions. (The tour includes » points plus the de-
pot.) Since n is large, the difference is negligible.
Therefore, for large n

MI/A2 + 62)
21 = p — Mrsp(VA/Vn)

For stability, we require p + A3rsp(VA/+n) < 1, which
implies
A2BispA

n>(1_p)2. (39)
For p — 1 this implies that » must be large, and thus,
our use of asymptotic TSP results is indeed justified.

The waiting time given in (38) 1s not itself an upper
bound on the wait for service of an individual demand;
it is the wait in queue for a set. The time of arrival of
a set is actually the time of arrival of the last demand
in that set. Therefore, we must add to (38) the time
a demand waits for its set to form and the time it
takes to complete service of the demand once its set
enters service. By conditioning on the position that
a given demand takes within its set, it is easy to show
that the average wait for a demand’s set to form is
(n — 1)/2x < n/2). By doing the same condition-
ing and noting that the travel time around the tour
is no more than the length of the tour itself, the
expected wait for service once a demand’s set enters
service is no more than Brsp VA + (1/n) Yi-, k3 <
Brse VA + (n/2)3. Therefore, if the total system time
is denoted Trsp:

MI/N + 0?)
VA
21— p— )\ﬂTSP-\/_;

+ E(IT::—[)) + Brsp m (40)

W <

(38)

Trsp <

We would like to minimize (40) with respect to » to
get the least upper bound. (One can verify that (40)
is convex, so there is indeed a minimum.) First,

rvad




however, consider a change of variable

_ ABY4
P U=
Physically, y represents a ratio of the average distance

d = Brsp «/Z/ Jn to its critical value (1 — p)/A. With
this change:

M1/A2 + 63)

T <50 = - »
AB3spA(L + p) | ABised
. 41
201 = p)*y? (1 -p)y “0

For p — 1, one can verify that the optimum y ap-
proaches 1. Therefore, by linearizing the last two terms
about y = 1, an approximate optimum value, y*, is
JA/N + o)1 = p)
2BTSP\/Z ’

=1

Substituting this approximation into (41) and noting
that for p — 1 the approximate y* approaches 1 we
have

AA 5TSP)\(VA(1 /7\2 + U%)
1= p)? (1-n"
5} 2TSP AA

p—>

(1 —p)

Trsp < Bisp (

Again, the leading term is proportional to
AA/(1 = p)*. Therefore, using Theorem 2
TTSP < 6'21'51’

™ < 2 p— 1.

The best estimate to date of Bysp is approximately 0.72
(Johnson), so the TSP policy has a system time in
heavy traffic about half that of the partitioning policy.
(In practice, heuristic rather than optimal tours would
be used to reduce the computational burden, which
would produce slightly higher system times.) These
results suggest that the policy of forming successive
TSP tours, which is reasonable in practice, is quite
good theoretically. In addition to providing a theoret-
ical guarantee, the results give a practical means of
optimally sizing routes for such policies by either
minimizing the right-hand side of (40) or using the
approximate y*.

4.4. The Space Filling Curve Policy

We next analyze a policy based on space filling curves
which we call the SFC policy. It was first proposed by
Bartholdi and Platzman (1988). The reader is encour-
aged to re-examine Section 1 for notation and basic
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results related to space filling curves. Let € and ¢ be
defined as in Section 1, and the DTRP service region,
o, be a square of area 4. Suppose that we maintain
the preimages of all demands in the system (i.e., their
positions in #). Then the SFC policy is to service
demands as they are encountered in repeated clock-
wise sweeps of the circle #. (Note that one could treat
a depot as a permanent “demand” and visit it once
per sweep.)

We now analyze this policy. Consider a randomly
tagged arrival and let W, denote the waiting time of
the tagged arrival, .% denote the set of locations of the
N, = | 4| demands served prior to the tagged de-
mand, and L denote the length of the path from the
server’s location through the points in .#; to the tagged
demand’s location which is induced by the SFC rule.
Finally, let s, be the on-site service time of demand
i € %, and R be the residual service time of the de-
mand under service. Then

No
Wo= 3 s, +L+R.
1

1=

Taking expectation on both sides gives

W = E[No]5 + E[L] + 525—2 (42)

Since in steady state the expected number of demands
served during a wait equals the expected number
who arrive, E[N;] = N = AW. Also, since L is the
length of a path through N, + 2 points in &/, L <

2 m . Therefore
E[L] < 2E[V(N; + 2)4]
<2 \/(N—+2)—A (Jensen’s inequality)
< 2VAWA + 2V24. (43)

Substituting these results into (42) we obtain the

quadratic inequality:

VI AST + 4424
Jp oA AV,

L—p 2(1 = p)

Solving for W and recalling that 7 = W + § it is

straightforward to show that

W -

Tae < vie —2— 4 o((1 = ™) (a4)
(I =p)

where vsee < 2 and o((1 — p)~?) denote terms that
increase more slowly than (1 — p)™> as p — 1. This
shows that the SFC policy is within a constant factor
of optimal. The constant vysec obtained by this argu-
ment, however, is based on worst case tours and is
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probably too large. If one assumes that the clockwise
interval between the preimages of the server and the
tagged demand is a uniform [0, 1] random variable
and the .% points are approximately uniformly dis-
tributed on this interval, then a constant of yspc =
% Bspe = 0.64 is obtained.

To estimate ysrc more precisely, we performed sim-
ulation experiments. The method of batch means (see
Law and Kelton 1982) was used to estimate the steady-
state value of Tsee. In this method, demands are
grouped into batches of a fixed size. If the batch size
is large enough, the sample means from each batch
are approximately uncorrelated and normally distrib-
uted (Law and Carson 1979). (We use 200 times the
minimum average number in the system given by
Theorem 2 as our batch size.) The sample mean and
variance of the individual batch means were then used
in t-test to estimate Tsec. The simulation was termi-
nated when the 99% confidence interval about the
estimate reached a width less than 10% of the value
of the estimate. This method was selected because the
busy periods of the SFC policy were quite long (indeed,
almost nonterminating) at high utilization values,
which precluded the use of techniques based on regen-
eration points,

The simulation was run for 4 = 1 and a range of
parameter values p, 5 and s°. Figure 3 shows one
example of the simulation estimate of Tsrc plotted
against AA/(1 — p)* for the case 4 = 1, 5 = 0.1 and
57 = 0.01 (zero variance). Each point is a different
value of p in the range 0.5-0.8. The results show that
vsec is approximately 0.66, which is very close to the

SFC
Slope = 0.440
100
) NN
1 Slope-0.406
80 -
£
s 807 4
1S
2 -
2 404
1 o
20
0 v L] M T v Ll
[o] 100 200 300

AA/(1-p)2

Figure 3. Simulation results: Tgec and Tnn versus
/(1 = p)2.
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approximate value of %38src. The system time for this
policy is therefore about 15% lower than that of the
TSP policy. It is also much more computationally
efficient.

4.5. The Nearest Neighbor Policy

The last policy we consider is to serve the closest
available demand after every service completion (the
nearest neighbor (NN) policy). The motivations for
considering such a policy are: 1) the nearest neighbor
was used in the heavy traffic lower bound on Theo-
rem 2, and 2) the shortest processing time (SPT) rule
is known to be optimal for the classical M/G/1 queue
(Conway, Maxwell and Miller 1967). As mentioned,
however, the travel component of service times in the
DTRP depends on the service sequence, so the clas-
sical M/G/1 results are not directly applicable; they
are only suggestive.

Because of the dependencies among the travel dis-
tances d,, we were unable to obtain rigorous analytical
results for the NN policy. However, if one assumes
there exists a constant «yn~ such that

VA
YNN \/]VT

where N is the number of demands in the system at
a completion epoch, then by using a modification of
the argument in (Kleinrock 1976b) Section 5.5, it is
possible to show that

, M
TNN<7NN(1 ) p—1
where T denotes the system time of the NN policy.
Assumption (45) is analogous to (21), but unlike (21),
has not been established formally.

We therefore perform simulation experiments iden-
tical to those for the SFC policy to verify the asymp-
totic behavior of Ty and estimate yn~. The results
show that yny is approximately 0.64. (See Figure 3.)
This means that Twy is about 10% lower than Tsgc
and about 20% lower than Trsp.

The results again confirm that the system time 7nn
follows the A 4/(1 — p)? growth predicted by the lower
bound in Theorem 2. Figure 3 clearly shows this highly
linear relationship.

E[d,| N7] < (45)

4.6. A Numerical Example

To illustrate the relative performance of the various
DTRP policies, the system time of each policy was
calculated (simulated in the case of the SFC and NN
policies) for the case 4 = 1, 5 = 0.1 and 52 = 0.0!
(zero variance) for a range of values of p. For the




parameterized policies (PART and TSP), we perform
numerical optimization to find the best parameter for
each value of p. The results show that the FCFS, SQM,
SFC and NN policies perform well in light traffic, but
the FCFS and SQM policies were unstable for p > 0.2.
The PART, TSP, SFC and NN policies perform best
in heavy traffic. Results for each group are graphed
separately.

Figure 4 shows system times as a function of p for
the light traffic case. The lower bound is also included.
Note that although the SQM policy is asymptotically
optimal as p — 0, it is quickly surpassed by the FCFS
policy as p increases. This is due to the extra travel
distance of the SQM policy, which hinders the policy
as queueing sets in. Also note that both policies reach
their saturation points for relatively low values of p.
The SFC and NN policies were comparable to the
FCFS policy in very light traffic, which is to be ex-
pected because they essentially behave like the FCFS
policy in this case. For p > 0.05, the SFC and NN
policies quickly surpass the FCFS and SQM policies.
Notice that the NN policy consistently performs better
than the SFC policy even in the light traffic cases.

The heavy traffic results are shown in Figure 5. Note
that the curves have nearly identical shapes as one
would expect from the A4/(1 — p)* asymptotic behav-
ior of each policy. (Only the constant of proportion-
ality differs.) The graphs show the sharp increase in
system time as the traffic intensity increases. The NN
policy is the best in this case with the SFC a close
second best. The TSP and especially the PART policy
are less effective.

This example suggests that both the SFC and NN
policies are effective over a wide range of traffic inten-
sities. Indeed, if one locates a depot at the median of
the region & and treats it as a permanent “demand,”

TSoM
3 System
Time
2]
TFCFS
1] TSFC
-
T
° T T T T 1 P
000 002 0.04 0.08 008 0.10

Figure 4. System times for light traffic case: numerical
example.
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Figure 5. System times for heavy traffic policies:
numerical example.

then both these policies can be made to behave like
the SQM policy as p — 1. These policies also have the
advantage of being nonparametric (i.e., the system
parameters are not needed to implement them as is
the case for the TSP and PART policies), and they are
therefore self-regulating. This feature is especially de-
sirable for systems that operate under highly variable
and/or unpredictable traffic conditions.

5. CONCLUDING REMARKS

We present a new model for dynamic vehicle routing
problems that attempts to capture the dynamic and
stochastic environment in which real-world systems
operate. It constitutes a significant departure from
traditional static and deterministic models. We suggest
several application areas for which this model is ap-
propriate. We derive lower bounds on the optimal
system time and characterize the performance of sev-
eral diverse policies.

The stochastic queue median policy, in which we
strategically locate a depot and then follow an FCFS
service order, was shown to be optimal in light traffic.
As the traffic intensity increases, however, FCFS pol-
icies become unstable. We then show that the parti-
tioning policy behaves reasonably well in heavy traffic
because it has a constant factor performance guarantee
and a finite system time for all values of p < 1.

In heavy traffic, the best policies were the TSP, SFC
and NN. The SFC and NN policies have a desirable
self-regulating behavior, while the TSP policy has the
advantage of returning regularly to the depot. The
TSP and SFC would appear to be more “fair” than
the NN policy because they partially obey an FCFS
discipline (i.e., sets are served in FCFS order in the
case of the TSP policy and for the SFC policy, the
entire region is periodically “swept” by the server).
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In addition, they have provable performance guaran-
tees. The NN policy, on the other hand, has system
times about 10% lower than the SFC policy and 20%
lower than the TSP strategy according to our simula-
tion study. It does not, however, have a provable
performance guarantee.

These policies, though quite diverse, have identical
asymptotic behavior in heavy traffic. Their asymptotic
system time is proportional to (1 — p)~2 and does not
depend on the service time variation (s°). This is in
stark contrast to the behavior of traditional queues,
and it illustrates the unique insights that can be ob-
tained by considering combined queueing/routing
models.

We believe that this class of dynamic vehicle routing
problems constitutes a very interesting and realistic
class of models, and as such deserves additional atten-
tion. An obvious extension is to multiple server
(m-vehicle) models. This is a topic we recently in-
vestigated in Bertsimas and Van Ryzin (1990),
where similar bounds and policies are established.
In particular, the system time is shown to have a
XA/m*(1 — p)? behavior in heavy traffic. We have
also investigated (cf. Bertsimas and Van Ryzin) the
effect of vehicle capacity for both the single and mul-
tiple vehicle cases. Our results suggest that the stability
condition is no longer independent of the service
region size in the capacitated case. Finally, one could
certainly construct other DTRP policies and analyze
them using the technique of Section 1.
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